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Abstract: It is known that the progression of oral cancer is accompanied
by changes in both tissue biochemistry and morphology. A multimodal
imaging approach combining functional and structural imaging modalities
could therefore provide a more comprehensive prognosis of oral cancer.
This idea forms the central theme of the current study, wherein this premise
is examined in the context of a multimodal imaging system that combines
fluorescence lifetime imaging (FLIM) and optical coherence tomography
(OCT). Towards this end, in the first part of the present study, the diagnostic
advantage obtained by using both fluorescence intensity and lifetime
information is assessed. In the second part of the study, the diagnostic
potential of FLIM-derived biochemical features is compared with that of
OCT-derived morphological features. For an objective assessment, several
quantitative biochemical and morphological features from FLIM and OCT
data, respectively, were obtained using signal and image processing tech-
niques. These features were subsequently used in a statistical classification
framework to quantify the diagnostic potential of different features. The
classification accuracy for combined FLIM and OCT features was estimated
to be 87.4%, which was statistically higher than accuracy based on only
FLIM (83.2%) or OCT (81.0%) features. Moreover, the complimentary
information provided by FLIM and OCT features, resulted in highest
sensitivity and specificity for the combined FLIM and OCT features for
discriminating benign (88.2% sens., 92.0% spec.), pre-cancerous (81.5%
sens., 96.0% spec.), and cancerous (90.1% sens., 92.0% spec.) classes.

© 2016 Optical Society of America

OCIS codes: (300.2530) Fluorescence, laser-induced; (170.6920) Time-resolved imag-
ing; (170.4500) Optical coherence tomography(170.6935); (100.0100) Image processing;
(170.6935) Tissue characterization; (170.1610) Clinical applications.

#261106 Received 15 Mar 2016; revised 18 Apr 2016; accepted 19 Apr 2016; published 25 Apr 2016 
(C) 2016 OSA 1 May 2016 | Vol. 7, No. 5 | DOI:10.1364/BOE.7.002000 | BIOMEDICAL OPTICS EXPRESS 2000 



References and links
1. N. Howlader, A. Noone, M. Krapcho, N. Neyman, R. Aminou, S. Altekruse, C. Kosary, J. Ruhl, Z. Tatalovich,

H. Cho, “Seer cancer statistics review, 1975–2009 (vintage 2009 populations),” Bethesda, MD: National Cancer
Institute (2012).

2. L. M. Abbey, G. E. Kaugars, J. C. Gunsolley, J. C. Burns, D. G. Page, J. A. Svirsky, E. Eisenberg, D. J. Krutchkoff,
and M. Cushing, “Intraexaminer and interexaminer reliability in the diagnosis of oral epithelial dysplasia,” Oral
Surg., Oral Med., Oral Pathol. Endodontol. 80, 188–191 (1995).

3. V. K. Ramanujan, J.-H. Zhang, E. Biener, and B. Herman, “Multiphoton fluorescence lifetime contrast in deep
tissue imaging: prospects in redox imaging and disease diagnosis,” J. Biomed. Opt. 10, 051407 (2005).

4. M. C. Skala, J. M. Squirrell, K. M. Vrotsos, J. C. Eickhoff, A. Gendron-Fitzpatrick, K. W. Eliceiri, and N. Ra-
manujam, “Multiphoton microscopy of endogenous fluorescence differentiates normal, precancerous, and can-
cerous squamous epithelial tissues,” Cancer Res. 65, 1180–1186 (2005).

5. M. C. Skala, K. M. Riching, D. K. Bird, A. Gendron-Fitzpatrick, J. Eickhoff, K. W. Eliceiri, P. J. Keely, and
N. Ramanujam, “In vivo multiphoton fluorescence lifetime imaging of protein-bound and free nicotinamide
adenine dinucleotide in normal and precancerous epithelia,” J. Biomed. Opt. 12, 024014 (2007).

6. P. Wilder-Smith, K. Osann, N. Hanna, N. E. Abbadi, M. Brenner, D. Messadi, and T. Krasieva, “In vivo multi-
photon fluorescence imaging: a novel approach to oral malignancy,” Lasers Surg. Med. 35, 96–103 (2004).

7. E. S. Matheny, R. Mina-Araghi, M. Brenner, N. M. Hanna, W. Jung, Z. Chen, and P. Wilder-Smith, “Optical
coherence tomography of malignancy in hamster cheek pouches,” J. Biomed. Opt. 9, 978–981 (2004).

8. P. Wilder-Smith, T. Krasieva, W.-G. Jung, J. Zhang, Z. Chen, K. Osann, and B. Tromberg, “Noninvasive imaging
of oral premalignancy and malignancy,” J. Biomed. Opt. 10, 051601 (2005).

9. P. Wilder-Smith, K. Lee, S. Guo, J. Zhang, K. Osann, Z. Chen, and D. Messadi, “In vivo diagnosis of oral
dysplasia and malignancy using optical coherence tomography: preliminary studies in 50 patients,” Lasers Surg.
Med. 41, 353–357 (2009).

10. R. Richards-Kortum and E. Sevick-Muraca, “Quantitative optical spectroscopy for tissue diagnosis,” Annu. Rev.
Phys. Chem. 47, 555–606 (1996).

11. M. G. Müller, T. A. Valdez, I. Georgakoudi, V. Backman, C. Fuentes, S. Kabani, N. Laver, Z. Wang, C. W. Boone,
R. R. Dasari, “Spectroscopic detection and evaluation of morphologic and biochemical changes in early human
oral carcinoma,” Cancer 97, 1681–1692 (2003).

12. P. Wilder-Smith, T. Krasieva, W.-G. Jung, J. Zhang, Z. Chen, K. Osann, and B. Tromberg, “Noninvasive imaging
of oral premalignancy and malignancy.” J. Biomed. Opt. 10, 051601 (2005).

13. P. Pande, S. Shrestha, J. Park, M. J. Serafino, I. Gimenez-Conti, J. Brandon, Y.-S. Cheng, B. E. Applegate, and
J. A. Jo,“Automated classification of optical coherence tomography images for the diagnosis of oral malignancy
in the hamster cheek pouch,” J. Biomed. Opt. 19, 086022 (2014).

14. J. Park, J. A. Jo, S. Shrestha, P. Pande, Q. Wan, and B. E. Applegate, “A dual-modality optical coherence tomog-
raphy and fluorescence lifetime imaging microscopy system for simultaneous morphological and biochemical
tissue characterization,” Biomed. Opt. Express 1, 186–200 (2010).

15. X. Tang,“Texture information in run-length matrices,” IEEE Trans. Image Process. 7, 1602–1609 (1998).
16. A. Criminisi, “Decision forests: A unified framework for classification, regression, density estimation, manifold

learning and semi-supervised learning,” Foundations and Trends in Computer Graphics and Vision 7, 81–227
(2011).
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1. Introduction

Oral cancers have an overall five-year survival rate of approximately 60%. However, when de-
tected in early stages, oral cancers can have a five-year survival rate as high as 80-90% [1].
Early detection of oral cancer, therefore, holds the key for improving survival rates. Diagno-
sis of oral cancer in late stages can be mainly attributed to the current method of diagnosis of
oral malignancies, which is primarily based on a visual assessment of oral lesions, followed by
biopsies in suspicious cases. The distinction between a benign and a malignant lesion is, how-
ever, not always very clear by a mere visual examination. In the absence of a reliable screening
tool, therefore, it is not easy to determine which abnormal looking lesions in the oral cavity
are worthy of concern. Since it is impractical to perform biopsies on every suspicious lesion,
the standard protocol is to watch a lesion over an extended period of time to determine if it is
indeed malignant. This often leads to a situation where a potentially malignant lesion, which
might be easily treatable at an earlier stage, advances into a later untreatable condition. Even
in cases where suspicious lesions are well identified, due to the complex nature of oral lesions,
the choice of the optimal site for biopsy remains an important concern. Additionally, high rates
of inter and intra-observer variability in histopathological evaluation of oral biopsies further
confound the diagnosis of oral cancer [2]. It is known that the progression of a malignant lesion
from an early stage to later stages is accompanied by both biochemical changes like alterations
in the relative abundances of tissue autofluorophores [3–5] and morphological changes like ep-
ithelial thickening and loss of the layered tissue structure [6–9]. An imaging system, capable of
providing information about both tissue biochemistry and morphology, could therefore serve
as an effective screening tool for possible malignancy of large number of oral lesions, which
are routinely encountered by dentists and other physicians during visual examination of the oral
cavity. Motivated by this idea, in this study, we primarily seek to examine the premise that using
both biochemical and morphological information, obtained from fluorescence lifetime imaging
(FLIM) and optical coherence tomography (OCT), respectively, increases the diagnostic accu-
racy for oral cancer, compared to using only one type of information.

Use of fluorescence imaging for the diagnosis of oral cancer has been reported in several
previously published studies. It is suggested that the alterations in the intrinsic fluorescence
properties of the oral tissue, which are indicative of the progression of oral cancer, are a con-
sequence of changes in the relative abundance of tissue autofluorophores like collagen, NADH
and FAD [5, 10, 11]. These changes result from various cellular processes that are linked to
oral dysplasia like increased NADH-FAD activity in the epithelial layer and degradation of
stromal collagen. The ability of fluorescence imaging modalities to probe these biochemical
changes makes them suitable for the diagnosis of oral cancer. Based on the source of con-
trast, fluorescence imaging techniques are often classified into two categories, namely, steady-
state and time-resolved. There are two main advantages of time-resolved measurements over
steady-state measurements. First, using fluorescence lifetime information from time-resolved
measurements, it is possible to distinguish between multiple fluorophores that have overlapping
emission spectra and are thus indistinguishable using only intensity information obtained from
steady-state measurements. Second, unlike steady-state measurements, lifetime measurements
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are more robust to variations in the intensity of excitation light and fluorophores’ concentra-
tions. Despite the aforementioned advantages of using lifetime information, most studies on
the applications of fluorescence imaging for oral cancer diagnosis are based on steady-state
measurements. This is partly because unlike steady-state fluorescence measurements, which
require simple instrumentation and minimal computation, instrumentation and signal process-
ing for lifetime based systems are more complex. Motivated by these observations, the first
part of the present study seeks to: (a) assess whether using lifetime information, in addition
to the fluorescence intensity information, offers any improvement in the diagnostic potential
of fluorescence based imaging for oral cancer, and (b) examine the necessity of performing
deconvolution (computational bottleneck in FLIM signal processing) for obtaining lifetime by
evaluating the performance of an approximate method of lifetime estimation that does not re-
quire deconvolution.

Likewise, progression of oral cancer is also associated with several morphological changes in
the oral epithelium, like epithelial thickening, loss of the layered structure, and irregular epithe-
lial stratification [9, 12]. The high-resolution images of sub-surface tissue structures obtained
from OCT imaging makes it a promising imaging modality for the diagnosis of oral cancer. In
our recently published study [13], we described automated algorithms for OCT data processing
for quantifying morphological features that are associated with the malignant transformation
of the oral epithelium. In the second part of the current study, the diagnostic accuracy of these
OCT features are compared with FLIM-derived biochemical features to investigate the advan-
tage of using both biochemical and morphological information, as opposed to using only one
type of information, for the diagnosis of oral cancer.

To evaluate the diagnostic potential of different features, a quantitative approach was taken
in this study, in which several metrics (or features) describing various attributes of FLIM and
OCT images were first obtained by using signal and image processing techniques. These fea-
tures were subsequently used to train and test a statistical classification model. The relative per-
formance of different feature sets in terms of their discriminatory ability was finally assessed
by performing statistical tests on their classification accuracies.

2. Materials and methods

2.1. Imaging & data acquisition

In this section, we present a brief description of our previously developed combined FLIM-
OCT system used to acquire the data used in this study. More details about the design and
validation of the system can be found in [14]. The FLIM module of the multimodal system
was implemented following a direct pulse-recording scheme, in which pixel rate could be equal
to the laser repetition rate. A frequency tripled Q-switched Nd:YAG laser (SPOT-10-50-355,
Elforlight Ltd.,England) was used as the excitation source (355 nm, 30 kHz maximum repetition
rate, 1 ns pulse FWHM). A 50 µm multi-mode fiber was used to deliver the excitation light
(shown in violet in Fig. 1) to the sample. The fluorescence emission from the sample (shown in
blue) was directed through a 200 µm multi-mode fiber into a multi-spectral detection module,
where it was separated into three spectral channels, namely, 390± 20 nm, 452± 22.5 nm, and
600± 125 nm, using a set of dichroic mirrors and filters. The emission from each channel was
launched into fibers with different lengths (1 m, 10 m and 19 m) chosen to provide 45 ns interval
between each emission band decay. The three emission bands, 390± 20 nm, 452± 22.5 nm, and
600± 125 nm, were selected to target endogenous fluorescence emission signal from collagen,
NADH, and FAD, respectively. The three consecutive decays were detected with a MCP-PMT
and sampled with a high bandwidth digitizer.

The Fourier-domain OCT module of the multimodal system was based around a 830 nm
(40 nm FWHM) superluminescent light emitting diode (SLED) (EXS8410-2413, Exalos,
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Fig. 1. Multimodal optical system for simultaneous co-registered OCT and FLIM imaging.
The OCT beam is shown in red, the FLIM excitation beam in violet, and the FLIM emission
beams in blue, cyan and green.

Langhome, PA) as the light source, providing an axial resolution of 7.6 µm (in air). Light from
the SLED (shown in red) was directed to a 2×2 optical fiber coupler through a single-mode
fiber, where it was split into reference and sample arms. The reflected beam from the reference
mirror and the backscattered light from the sample were recombined at the fiber coupler and the
spectral interferogram was obtained using a custom designed grating based high speed spec-
trometer (1200 lines/mm; bandwidth: 102 nm) and a CCD line-scan camera (line rate of up to
53 kHz). The detected signal was acquired and digitized using a high speed imaging acquisition
board.

The OCT sample beam and FLIM excitation were combined via a dichroic mirror. Beam
scanning over a field of view of 2×2 mm2 (corresponding to 600×600×1024 (x×y×depth)
pixels for OCT and 60×60×768 (x× y× time) pixels for FLIM) was achieved using a set of
galvo mirrors. A broadly achromatic (UV-near IR) objective lens was used to simultaneously
focus the OCT and FLIM excitation beams resulting in lateral resolutions of 13.4 µm for OCT
and 100 µm for FLIM. The data acquisition module for the imaging system was developed in
Labview and all processing was done in MATLAB.

2.2. Animal protocol

The standard Syrian golden hamster (mesocricetus auratus) cheek pouch model of epithelial
cancer was used in this study. The animal protocol consisted of scheduled application of a sus-
pension of 2.0% Benzo[a]pyrene (Sigma Aldrich Corporation, St Louis, Missouri) in mineral
oil to the right cheek of 20 hamsters three times per week for up to 32 weeks. 11 control animals
used in this study were similarly treated with mineral oil alone. The procedure was approved
by the Institution for Animal Care and Use Committee (IACUC) at Texas A&M University.
Before imaging, the hamsters were anaesthetized by an intraperitoneal injection of a mixture
of ketamine and xylazine. The cheek pouches of the anaesthetized animals were inverted and
positioned under the microscope objective of the imaging system. At the end of each scan, the
imaged region was dried and the center of the area was marked with ink to allow correlation
between the imaging and biopsy sites. After imaging, the animal was euthanized by barbiturate
overdose. This ink mark was centered while extracting the imaged region for histopathological
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processing using a biopsy punch tool with a diameter of 1 cm. In order to avoid smudging of
the ink, sample was submerged in ethanol overnight before storing it in formalin.

2.3. Imaging & histological evaluation

Based solely on visual examination of cheek pouches, several imaging sites (potentially malig-
nant sites in animals in the treatment group) were identified and imaged using our multimodality
system. Biopsy samples from the imaged areas were processed following standard procedures
for histopathology analysis (H&E staining). On an average, 10 sections per tissue sample were
obtained and each section was assessed by a board certified pathologist to be one of the fol-
lowing five grades: (i) normal (G0), (ii) hyperplasia and hyperkeratosis (G1), (iii) hyperplasia
with dysplasia (G2), (iv) carcinoma in situ (G3), and (v) squamous cell carcinoma (G4). Upon
histopathological evaluation, the majority of the imaging sites were found to have mixed his-
tology, such as cases showing both pre-cancerous and cancerous regions in the same sample.
Since our classification method, like most standard machine learning algorithms, assume mu-
tual exclusivity of classes, only a small subset of 48 samples out of a total of 153 samples
for which the histopathological assessment was unambiguous (based on the criteria described
next) could be used in our study. Specifically, for classification analysis, the following criteria
was used to assign class labels to each tissue sample: (i) class 1 (benign; 22 samples): samples
from the control group (15 samples) and samples for which all histology sections were graded
as G1 (7 samples), (ii) class 2 (pre-cancerous; 12 samples): samples for which at least 50%
sections were graded as G2 or G3 and none of the sections were graded as G4, and (iii) class 3
(cancerous; 14 samples): samples for which all sections were graded as G4.

2.4. Data processing

2.4.1. FLIM features

For a systematic analysis of FLIM features, we grouped the FLIM features into two groups,
namely, the exact FLIM features and the approximate FLIM features, each containing nine
features. Each group of nine features comprised the normalized fluorescence intensity and two
lifetime features (which shall be referred to as the average lifetime and the 1/e lifetime) for each
spectral channel (thereby making a total of 3 features × 3 spectral channels = 9 features). The
average lifetime is defined as the average time a fluorophore stays in the excited state. Thus, if
h(t) denotes the time-resolved fluorescence decay, then the average lifetime, denoted by τavg, is
estimated as:

∫
∞

0 t.h(t)dt/
∫

∞

0 h(t)dt. The 1/e lifetime provides another way of quantifying the
rate of fluorescence decay, which is based on the assumption that the fluorophore follows first
order decay dynamics. In such a case, the fluorescence lifetime can be estimated as the time
at which the fluorescence intensity is reduced to 1/e of its maximum value. The 1/e lifetime
shall be denoted by τ1/e. The average lifetime is different from 1/e lifetime in that it takes
into account the entire fluorescence decay to estimate the lifetime, unlike 1/e lifetime, which
is based on only the initial part of the fluorescence decay. Also, for a fluorophore that follows a
first order decay kinetics, the two lifetimes, τavg and τ1/e, are equal.

In FLIM, the measured fluorescence decay (denoted by y(t)) is mathematically modeled as a
convolution of the instrument response (denoted by x(t)) with the intrinsic fluorescence decay
of the sample at that pixel (denoted by h(t)), i.e. y(t) = x(t)∗h(t) . Thus, to obtain the intrinsic
fluorescence decay for lifetime estimation, the instrument response needs to be deconvolved
from the measured fluorescence decay. The average and 1/e lifetimes estimated from the de-
convolved fluorescence decays, together with the normalized intensities constituted the exact
FLIM features. The approximate FLIM features also comprised normalized intensities, aver-
age and 1/e lifetimes. However, unlike the exact lifetime features, which were obtained from
the deconvolved decay profiles, the approximate lifetime features were estimated directly from
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Fig. 2. Schematic illustrating the process of obtaining exact and approximate lifetime fea-
tures. The exact lifetimes are obtained from the deconvolved intrinsic decay h(t) shown in
blue, whereas the approximate lifetimes ate obtained from the falling part of the recorded
decay y(t), denoted by h̃(t), which is used as a substitute for the the intrinsic decay.

the undeconvolved recorded decay profiles by using the falling part of the recorded decay as
a surrogate for the deconvolved decay profile, and subsequently estimating the lifetimes (both
average and 1/e) in a manner similar to the exact lifetimes. The process of obtaining the exact
and approximate lifetimes is illustrated in Fig. 2.

As noted earlier, the 2-D FLIM feature maps contain 60×60 pixels over a FOV of 2×2 mm2.
For the analyses presented here, these feature maps were spatially averaged (window size: 3×3
pixels) to produce FLIM feature maps of size 20×20 pixels.

2.4.2. OCT features

We defined several features to characterize tissue morphology in OCT images. These features
can be broadly categorized into two groups, which we shall refer to as A-line derived and B-scan
derived features. Here, we briefly describe the the process of obtaining these features, which is
also outlined in Fig. 3. For a more detailed description, interested readers are referred to our
recent publication [13]. As can be seen in Fig. 3(a), an OCT B-scan of a normal oral tissue has
a layered appearance, where different layers of the oral tissue can be seen as bright and dark
bands. This is in contrast to the B-scan of a cancerous oral tissue, shown in Fig. 3(b), which
has brightest intensity at the surface, which gradually fades off with depth. This layered versus
non-layered structure is also evident by examining the filtered A-lines in a B-scan. In the case
of layered tissue, an A-line has multiple prominent peaks corresponding to the different layers
(Fig. 3(f)), whereas for an non-layered tissue, there is just one prominent peak at the tissue
surface (Fig. 3(g)). To quantify these characteristics of A-lines, two types of A-line features
were defined. The first one is referred to as the “peaks and valleys features” and the second
one shall be called the “crossings features”. To calculate the peaks and valleys features, the raw
A-lined were first filtered using a nonlinear filtering process (details of which can be found in
our recent publication [13]). Next, local maxima (peaks) and minima (valleys) of the filtered
A-lines were detected and the following four peaks and valleys features were computed: (i)
Σpi, (ii) Σpi −Σvi, (iii) Σpi +Σvi, and (iv) Σ(pi − (vi + vi+1)/2), where pi and vi denote the
normalized intensity values of the ith peak and valley, respectively. More details about the
filtering process used can be found in our To calculate the crossings features, for each filtered
A-lines, a crossings vector of size 15 × 1 was defined. The j th. element of the crossings vector
denotes the number of times the A-line intersects an imaginary line drawn parallel to the x-axis
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Fig. 3. Schematic illustrating the process of obtaining different OCT features. (SRE:
Short Run Emphasis, LRE: Long Run Emphasis, HGRE: High Gray-level Run Empha-
sis, LGRE: Low Gray-level Run Emphasis, SRLGE: Short Run Low Gray-level Emphasis,
LRHGE: Long Run High Gray-level Emphasis, SRHGE: Short Run High Gray-level Em-
phasis, LRLGE: Long Run Low Gray-level Emphasis, GLNU: Gray Level Non-uniformity,
RLNU: Run Length Non-uniformity, RPC: Run Percentage)

(depth) and having a y coordinate (intensity value) of (20− j)/20. Intuitively, if an A-line has
just one prominent peak, then all the elements of the crossings vector would be 2, as shown
in Fig. 3(i), whereas, for an A-line that has multiple peaks and valleys, the elements of the
crossings vector would be different than 2 (Fig. 3(h)). Four crossings features were estimated as
the (a) mean, (b) median, (c) mode and, (d) standard deviation of the crossings vector. Overall,
eight A-line derived features were obtained for each A-line, resulting in eight two-dimensional
feature maps of size 600×600.

A different kind of structural information can be quantified by analyzing the texture of OCT
images. Speckle in OCT imaging results from multiple scattering events and contains informa-
tion about the size and distribution of the sub-resolution scatterers. The idea of using texture
resulting from speckle is motivated by the fact that oral dysplasia is known to be characterized
by basal cell hyperplasia and epithelial proliferation. The presence of dysplastic cells in the ep-
ithelial layer manifests as a highly speckled region in an OCT B-scan, which can be seen in the
inset in Fig. 3(k). This is in contrast to the OCT image of a normal oral tissue shown in Fig. 3(j),
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where different layers appear as more homogeneous bright and dark regions. Due to the mul-
tilayered nature of the oral tissue, the first step in computing these features was to segment
out the epithelial region in a B-scan. In case of a layered tissue image, this was achieved by
identifying the second prominent peak along A-lines in an OCT B-scan. In cases where layered
tissue structure was absent, the boundary was detected based on segmenting the B-scan based
on k-means clustering (details can be found in [13]). After delineating the epithelium bound-
ary, the region between the surface and the epithelial boundary (region enclosed by the blue
and cyan lines in Fig. 3(j) & (k)) was selected for texture analysis using gray level run lengths
(GLRL) [15] to discriminate the uniform bright and dark banded region in an OCT scan of a
normal tissue (inset in Fig. 3(j)) from an interspersed speckled region in the case of a cancerous
oral tissue (inset in Fig. 3(k)). A “gray level run” is a sequence of consecutive pixels, along
some direction, having the same gray level value. The length of a gray level run is the number
of pixels in that run. To quantify texture based on GLRL, a two-dimensional GLRL matrix for
a given direction was computed. The element (i, j) of the GLRL matrix denotes the number of
times a run of length j and pixel value i is found in the image. The process of obtaining a run
length matrix from an image is illustrated Fig. 3(l). To obtain texture features from a GLRL
matrix, 11 different measures characterizing different properties of texture, like coarseness and
non-uniformity, were computed. The GLRL features were computed for both vertical and hor-
izontal directions denoted by 0◦ and 90◦, and for two quantization levels, namely, binary and
32 gray levels, yielding 44 B-scan derived texture features. Both the A-line and B-scan derived
OCT feature maps were spatially averaged (window size: 30×30) to yield a total of 52 two-
dimensional OCT feature maps of size 20×20 (same as FLIM feature maps) corresponding to
a pixel resolution of 100 µm/pixel.

2.4.3. Classifier design and evaluation

To evaluate the discriminatory ability of the OCT features, we used a popular classification
algorithm called random forest. The choice of using random forests was based on its several
attractive properties, such as: ability to handle more than two classes, low variance, robustness
to noisy labels and, ability to work with large number of correlated features [16]. The perfor-
mance of the classifier was assessed by using a variant of the leave-one-out cross-validation
(LOO CV) method to estimate the classification accuracy. In the standard LOO CV procedure,
all but one data-points are used for training the classifier and the left out data-point is used
for testing. The process of training and testing is repeated in an iterative round-robin fashion,
until all the data-points have been used as test data-points. The different iterative rounds of CV
are called the CV folds. Since the data-points in our study correspond to pixels in 2-D feature
maps, to avoid optimistically biased accuracy estimates resulting from spatial correlation be-
tween pixels, we performed leave-one-sample-out cross-validation (LOSO CV), in which the
CV folds were performed over the datasets and not pixels. In addition to the mean classification
accuracy, the sensitivity and specificity for each class was also computed.

2.4.4. Statistical comparison of different features sets

Two types of non-parametric statistical tests were used to compare the performance of different
feature sets. To compare the performance of two sets of features, Wilcoxon signed rank test
was used. The Wilcoxon test is a nonparametric procedure for comparing two sets of paired
observations. The classification accuracies for different CV folds for classifiers based on the
two feature sets were treated as the different observations. The null hypothesis for the test was
that there there was no difference in the accuracies achieved by classifiers based on the two
sets of features and the two-sided alternative hypothesis stated that it was otherwise. The sec-
ond type of statistical test, namely, the Friedman test, was used to compare the performance of
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Table 1. Results of Wilcoxon signed rank test for comparing the classification accuracies
of the exact and approximate FLIM features (n = 31,α = 0.05)

Feature Sets Compared R+ R− T statistic z statistic p value

Exact FLIM - Approx. FLIM 159 337 159 -1.7441 0.081

more than two feature sets. The Friedman test is the non-parametric equivalent of the ANOVA
test. The null hypothesis for the Friedman test was that there was no difference in the accu-
racies achieved by classifiers based on the different sets of features being compared, and the
alternative hypothesis stated that there was at least one pair of feature sets that had different
classification accuracies. Briefly, the Friedman test ranks the different features sets being com-
pared for each cross-validation fold based on the classification accuracies. The average ranks
for the different feature sets are then used to compute a test statistic (χ2

F statistic) which is
compared against a critical value determined based on a pre-determined significance level to
check whether the measured average ranks are significantly different from the mean rank. If
the critical value is less than or equal to the test statistic, the null hypothesis is rejected in favor
of the alternative hypothesis. In such a case, a post-hoc test is conducted to identify which fea-
tures sets are different. In this study, Holm procedure was used as a post-hoc test to compare
the performance of the best feature set (as judged by the mean ranks obtained during Friedman
test) against the remaining feature sets. Holm procedure compares a set of logically interrelated
hypothesis of comparisons between the control and other feature sets. For each pairwise com-
parison, the p value is computed based on the mean rank difference between the two groups
and the null hypothesis that there is no difference between the two groups is rejected if the p
value is found to be less than an adjusted α value (called Holm α in this study).The choice
of the Holm procedure was motivated by the simplicity and power of the test for performing
multiple comparisons as described in [17].

3. Results and discussions

3.1. Comparison of the exact and approximate FLIM features

The mean classification accuracy for the exact and approximate FLIM features was found to be
83.2% and 80.9%, respectively. To test whether, in general, the exact FLIM features performed
better than the approximate features, Wilcoxon signed rank test was performed. Out of the 48
pair-wise comparisons (corresponding to 48 LOSO cross-validation folds), the overall accuracy
for the exact FLIM features was found to be the same as that for the approximate FLIM features
in 17 comparisons, higher in 22 comparisons, and lower in the remaining 9 comparisons. The
results of the Wilcoxon signed rank test (n = 31,α = 0.05) summarized in Table 1 indicated
that the classification accuracies for the exact FLIM features were not statistically different (p
value = 0.081, α = 0.05) than those for the approximate features. Although the mean accuracy
for the exact FLIM features was higher than the approximate FLIM features, the p-value for
the Wilcoxon test indicates that the difference between the overall accuracies for the two sets
of FLIM features was not significantly different at α = 0.05 level of significance. This suggests
that an accuracy as high as that obtained by using the exact FLIM features can, in fact, be
obtained by using the approximate FLIM features. The advantage of using approximate features
over the exact features being that estimating the approximate FLIM features obviates the need
for deconvolution and thus requires significantly less computational effort. In the following
discussion, unless stated otherwise, “FLIM features” shall be assumed to refer to the “exact
FLIM features”.
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Table 2. Results of Friedman test for comparing the classification accuracies of different
FLIM feature sets (n = 48,d f = 3,α = 0.05)

Feature Sets

All Int. Int. & τ1/e Int. & τavg
χ2

F
statistic

p value

Mean Rank 3.4 1.6 2.2 2.8 54.34 <0.001
Mean Accuracy 0.832 0.628 0.684 0.784

Table 3. Post-hoc comparison table for Friedman test for comparing different exact FLIM
features (n = 48,α = 0.05)

Hypothesis Feature Sets Mean Rank
z statistic p value Holm

Index Compared Difference α

1 All - Intensity 1.74 6.60 <0.001 0.017
2 All - Intensity & τ1/e 1.19 4.51 <0.001 0.025
3 All - Intensity & τavg 0.57 2.17 0.015 0.05

3.2. Comparison of intensity and lifetime features

To assess the improvement in the diagnostic accuracy achieved by using both intensity and life-
time information, as opposed to only intensity, the classification accuracies for the following
four sets of exact FLIM features were compared: (i) All FLIM features (3 normalized intensi-
ties, 6 lifetimes), (ii) Intensities only (3 features), (iii) Intensities and 1/e lifetimes (6 features),
and (iv) Intensities and average lifetimes (6 features). To test for statistical differences between
the four sets of FLIM features, Friedman test (n = 48,α = 0.05) was performed. The results of
the Friedman test (χ2

F = 54.34,d f = 3, p < 0.001), summarized in Table 2, led to the rejection
of the null hypothesis, suggesting that significant difference exists between the classification
accuarcies of one or more feature sets. Based on the mean accuracies and ranks of the different
feature sets summarized in Table 2, it was hypothesized that classification performance based
on All FLIM features was better than the other feature sets. To test this hypothesis, Holm post-
hoc procedure was conducted in which the classification accuracy of all FLIM features was
compared with the other three feature sets. The results of the Holm procedure are presented in
Table 3. Based on the results of the Holm procedure, all three hypotheses corresponding to the
pairwise comparisons between All FLIM features and the other three feature sets were rejected
suggesting that the performance of All FLIM features was statistically better that the other three
feature sets.

These results are in agreement with the findings of an earlier study investigating the potential
of time-resolved fluorescence measurements for oral cancer in a hamster cheek pouch model
[18], where the authors found that using both intensity and lifetime features as opposed to only
intensity features resulted in a significant improvement in the overall classification accuracy.
The poor performance of intensity based imaging systems in oral cancer screening has also been
reported in several other studies [19,20], where it has been noted that there is lack of substantive
evidence to suggest that the use of autofluorescence intensity based imaging system improves
the sensitivity and specificity of oral cancer beyond the conventional oral examination.

Also, the fact that using both lifetimes τ1/e and τavg along with intensity results in a statis-
tically higher overall accuracy compared to using either of them with intensity, suggests that
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Table 4. Results of Friedman test for comparing the classification accuracies of FLIM and
OCT features (n = 48,α = 0.05)

Feature Sets

FLIM
& OCT

OCT FLIM χ2
F

statistic
p value

Mean Rank 2.5 1.6 2.0 26.49 <0.001
Mean Accuracy 0.874 0.810 0.832

Table 5. Post-hoc comparison table for Friedman test for FLIM and OCT features (n =
48,α = 0.05)

Hypothesis Feature Sets Mean Rank
z statistic p value Holm

Index Compared Difference α

1 FLIM & OCT - OCT 0.93 4.54 <0.001 0.025
2 FLIM & OCT - FLIM 0.51 2.50 0.006 0.05

using both lifetimes provide a more complete description of the fluorescence decay dynamics.
A similar result was reported in [18], where the authors found highest overall classification
accuracy for a combination of intensity, average lifetime and zeroth order Laguerre coefficient
features, much like the combination of intensity, τavg, and τ1/e in the present study.

3.3. Comparison of FLIM and OCT features

The mean accuracies and the ranks for the FLIM, OCT, and FLIM & OCT features are listed in
Table 4. To test for statistical differences between the three sets of features, Friedman test (n =
48,α = 0.05) was performed. The results of the Friedman test (χ2

F = 26.49,d f = 3, p < 0.001),
summarized in Table 4, led to the rejection of the null hypothesis, suggesting that significant
difference exists between the classification accuarcies of two or more feature sets. Based on
the mean accuracies and ranks of the different feature sets, it was hypothesized that combin-
ing FLIM and OCT features leads to better classification accuracy than using either FLIM or
OCT features. To test this hypothesis, Holm test was performed to compare the classification
accuracy of the combined FLIM & OCT features with the individual OCT and FLIM features.
Based on the results of the Holm procedure presented in Table 5, the two hypotheses corre-
sponding to the pairwise comparisons between the combined FLIM & OCT features and the
individual OCT and FLIM features were rejected suggesting that the classification accuracies
for the combined FLIM & OCT features were statistically better that the individual OCT or
FLIM features.

In addition to the mean classification accuracies, the sensitivity and specificity for each class
(benign, pre-cancerous and cancerous) for the different feature sets were also computed. Based
on the values listed in Table 6, it can be seen that the FLIM features had higher sensitivity and
specificity than the OCT features for the benign class. On the other hand, OCT features had
better sensitivity and specificity than the FLIM features for the cancerous class. For the pre-
cancerous class, the two sets of features performed comparably. By combining both FLIM and
OCT features, best sensitivity and specificity was achieved for all the classes.

The stacked bar graphs shown in Fig. 4, provide further insights into the classification per-
formance. The graph shows the proportion of samples belonging to a given class: benign, pre-
cancerous, or cancerous that were classified correctly or incorrectly. The bar graph in Fig. 4(a)
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Table 6. Sensitivity and specificity for FLIM and OCT features

Sensitivity Specificity

Feature Sets Feature Sets

CLASS FLIM &
OCT

FLIM OCT
FLIM &

OCT
FLIM OCT

Benign 0.882 0.868 0.786 0.920 0.934 0.884
Pre-cancerous 0.815 0.759 0.767 0.960 0.923 0.870
Cancerous 0.901 0.826 0.878 0.920 0.891 0.953

suggests that the classification based on the FLIM features provides relatively poor discrimi-
nation between the pre-cancerous and cancerous samples (cyan and red) compared to the clas-
sification based on the OCT features. A possible reason for this could be that the information
contained in the fluorescence signal obtained from the samples in the pre-cancerous and can-
cerous classes was not discriminatory enough to achieve an accurate class separation, a fact
noted by several other researchers investigating the potential of fluorescence based imaging
methods for the diagnosis of oral cancer [18,21,22]. In contrast, significant difference in tissue
morphology between the pre-cancerous and cancerous classes enabled superior performance of
the OCT features.

Likewise, the bar graph in Fig. 4(b) suggests that the OCT features perform poorly compared
to the FLIM features in discriminating benign samples from pre-cancerous samples (green and
cyan). Following similar reasoning as before, this confusion between the two classes could
have possibly resulted from the lack of sensitivity of the OCT features used in this study, to
characterize differences in tissue morphology between samples in the benign and pre-cancerous
classes. To overcome this limitation, more OCT features that are capable of characterizing
morphological indicators of early dysplasia like changes in keratinization, epithelial thickening,
irregular epithelial stratification and broadening of rete ridges could be evaluated and combined
with the existing set of OCT features. Although a standard criteria of interpreting OCT B-scans
for grading oral dysplasia has not been developed yet, previous studies on OCT-based diagnosis
of oral cancer, both in hamster cheek pouches [6–8] and humans [9], have been successful in
identifying the aforementioned histologically relevant morphological features in OCT B-scans,
for diagnosing oral pre-malignancies and malignancies.

The classification based on both FLIM and OCT features takes advantage of the complimen-
tary nature of the two feature sets to yield an improved performance compared to the classi-
fication based on either of those feature sets. This is indicated by the highest sensitivity and
specificity values for the combined FLIM and OCT features, for all three classes.

It is of relevance to note that the performance of OCT-based classification is mainly lim-
ited by the nature of OCT features in terms of their ability to provide a sufficiently detailed
description of tissue morphology. In this sense, one could expect to achieve a superior classi-
fication performance by using a set of more descriptive and richer OCT features, as discussed
earlier. Moreover by using a longer wavelength (such as 1310 nm) OCT system, morphologi-
cal information from deeper tissue structures could be obtained, which would possibly lead to
further improvement in the diagnostic accuracy of OCT-based features. The general intensity
and lifetime trends observed in our study were consistent with previously published studies,
where fluorescence signal from non-cancerous tissue was strongest in the first emission band
(390± 20 nm), while for cancerous tissue, the fluorescence intensity was highest in the second
band (452± 22.5 nm) and lowest in the first band. This trend along with the lifetime values in
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(a) (b)

(c)

Fig. 4. Stacked bar graph showing the proportion of samples belonging to a given class:
benign, pre-cancerous, or cancerous (x axis, true class) that were classified correctly (pre-
dicted as belonging to the same class) or incorrectly (predicted as belonging to one of the
other two classes) for (a) FLIM features (b) OCT features (c) FLIM & OCT features.

the three bands suggests a relative decrease in collagen fluorescence and simultaneous increase
in fluorescence from NADH and FAD with the progression of cancer. While this trend was
true in general, particularly for the two extreme classes, namely, benign and cancerous, several
exceptions were observed due to limitations of FLIM imaging arising from two main factors:
(i) the difficulty to identify the specific sources contributing to the bulk fluorescence measure-
ments, and (ii) the complex and sometimes similar nature of alterations in metabolic cofactors
and structural proteins that occur in both benign and malignant oral conditions. For example,
loss of stromal fluorescence is observed both in benign tissue with chronic inflammation caused
by the breakdown of collagen crosslinks and in dysplastic tissue due to epithelial thickening and
degradation of stromal collagen [6,23,24]. Similarly, an increase in keratin fluorescence can be
observed in both benign and malignant oral conditions, due to the presence of keratotic lesions
in both conditions [25, 26]. This was also noticed in the current study, where histological eval-
uation of several samples in both the benign and pre-cancerous classes revealed the presence
of hyperkeratosis. Although an increase in NADH fluorescence originating from the epithelial
layer has been reported to be strongly correlated with neoplastic progression [4, 24, 27], in the
presence of keratinized epithelium, most of the excitation light is back-scattered, which sig-
nificantly reduces the fluorescence signal obtained from NADH. Moreover, the similarity in
the spectral and temporal fluorescence characteristics of collagen and keratin [28, 29] further
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Fig. 5. Results of the classification presented as diagnostic maps overlaid on the OCT vol-
umes for a (a) benign (b) pre-cancerous and (c) cancerous sample. Also shown is a repre-
sentative sample that contains more than one class

confounds the FLIM-based diagnosis of oral dysplasia.
Another possible reason for the relatively inferior performance of the different feature sets for

the pre-cancerous class could be the presence of mislabeled pixels (data-points) in the training
data that belong to the pre-cancerous class. As mentioned earlier, a sample was labeled pre-
cancerous if the histological evaluation of at least 50% of sections in that sample indicated some
grade of dysplasia. This was done due to the lack of samples belonging to the pre-cancerous
class that had sufficiently homogeneous evaluation across all the histology sections. As a result
of this, not all the pixels in a pre-cancerous sample (although all labeled as pre-cancerous) were
truly representative of pre-cancerous conditions. We speculate that the “label noise” arising
in this way could also be responsible for the confusion between the pre-cancerous and other
classes.

4. Conclusions

In this study, we demonstrated, perhaps for the first time, the feasibility of using automated
quantitative image analysis algorithms for extracting relevant biochemical and morphological
features from 3-D FLIM and OCT data to perform automated diagnosis of oral cancer. The
results of the classification algorithm could be presented in form of a diagnostic map overlaid
on the corresponding OCT volume for a better diagnostic interpretation as shown in Fig. 5. It
is interesting to note in Fig. 5(d) that for regions classified as benign (color coded as blue) by
the automated algorithm, the integrity of the layered tissue structures is intact, whereas for the
regions classified as pre-cancerous (color coded as green), partial loss of the layered structure
is evident.

The main finding to emerge from the present study was that the synergy of biochemical
and morphological information obtained from FLIM and OCT, respectively, increases the sen-
sitivity and specificity for detecting malignant and pre-malignant lesions, compared to using
information from only one type of modality. The second major finding of our study was that
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using both intensity and lifetime FLIM features, as opposed to only intensity features, provides
significant improvement in the diagnostic accuracy. Moreover, to reduce the computational
overhead of performing deconvolution in FLIM data processing, the performance of a new set
of FLIM features, called the approximate FLIM features was also analyzed. The results of this
analysis indicated that a diagnostic power as high as that of the exact FLIM features could in
fact be obtained by using the approximate FLIM features. The advantage of using approximate
features over the exact features being that estimating the approximate features does not require
deconvolution and thus significantly reduces the computational effort.

We do recognize that due to the complex nature of the clinical and histological presentation
of oral lesions, a further study using a larger pool of samples with more diverse histopathology
is warranted to further validate the findings of the current study. Nevertheless, the findings of
the present study provide an encouraging first step towards further exploration of automated
analysis of multimodal imaging data for improved diagnosis of oral cancer.
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